Q: Where and when on Earth can the Sun rise in the west?

A: Near one of the poles in spring, since the earth's motion round the sun is then more significant than its rotation.

Let `T` be the angle of tilt of the earth's axis (about 0.4
radians), and let `R` be its radius (about 6.4e6 m). Suppose
for the moment that the earth isn't rotating on its axis, and consider a
small region around one of the poles. As the earth moves round the sun
then in spring the night-day terminator will move across this region
with speed 2 pi `R` sin `T` / year, and if we stand in
the appropriate part of the region we will call the direction in which
the sun appears to be rising west.

Now suppose the earth *is* rotating on its axis. Then we will
be carried from west to east, ie in the same direction as the
terminator. However, suppose we are so close to the pole that we are
moving slower than the terminator - then the terminator will pass us in
the same direction as before, and we will still see the sun rise
(slowly) in the west. If our latitude is pi/2 - `L` then our
speed due to the rotation is 2 pi `R` sin `L` /
day. Thus - assuming that `L` is small relative to `T`
so that the terminator's speed is constant throughout the region - we
must have

2 pi `R` sin `L` / day < 2 pi
`R` sin `T` / year, ie sin `L` < sin
`T` day/year.

Our distance from the pole is
`RL`. With the above values of `T` and `R` we
can therefore be up to 6.9 km from the pole.

This page is maintained by Thomas Bending,
and was last modified on 7 March 2017.

Comments, criticisms and suggestions are welcome.
Copyright © Thomas Bending 2017.